स्वास्थ्य सम्बन्धी सम्पूर्ण जानकारी

جميع المعلومات المتعلقة بالصحة

Lahat ng impormasyong may kaugnayan sa kalusugan

स्वास्थ्य संबंधी सारी जानकारी

Semua maklumat berkaitan kesihatan

ကျန်းမာရေးဆိုင်ရာ အချက်အလက်အားလုံး

ຂໍ້ມູນທີ່ກ່ຽວຂ້ອງກັບສຸຂະພາບທັງໝົດ

Dhammaan macluumaadka la xiriira caafimaadka

स्वास्थ्यसम्बद्धाः सर्वाणि सूचनानि

Alle gezondheidsgerelateerde informative

Tota la informació relacionada amb la salut

ሁሉም ከጤና ጋር የተያያዙ መረጃዎች

ព័ត៌មានទាក់ទងនឹងសុខភាពទាំងអស់។

صحت سے متعلق تمام معلومات

Mọi thông tin liên quan đến sức khỏe

The Health Thread Logo

The Health Thread

THT store

Listen to this audio

Epigenetic clock refers to a method used to estimate biological age by examining changes in DNA methylation patterns. Epigenetics refers to modifications in gene expression patterns that are not caused by changes in the DNA sequence itself but can have a significant impact on gene activity.

Dr. Steve Horvath is a prominent scientist who has made significant contributions to the field of epigenetic clock research. He has developed several epigenetic clocks that accurately estimate an individual’s chronological age based on DNA methylation data from specific sites in the genome. These clocks provide an estimate of an individual’s biological age, which can differ from their chronological age.

The accuracy of the epigenetic clock developed by Dr. Horvath has been extensively validated. It has been shown to be highly precise in predicting age across various tissues and cell types, including blood, brain, and other organs. In numerous studies, the Horvath DNAmAge clock has consistently demonstrated remarkable accuracy, with predictions often closely aligning with an individual’s chronological age.

The epigenetic clock is not only used to estimate chronological age but also serves as a valuable tool in studying age-related processes and diseases. It has been applied in research to investigate factors influencing biological aging, such as lifestyle choices, environmental exposures, and disease states. By comparing an individual’s biological age to their chronological age, researchers can gain insights into the impact of these factors on aging and age-related diseases.

Moreover, the epigenetic clock has shown promise as a biomarker for assessing health status and disease risk. Accelerated aging, as indicated by a higher biological age compared to chronological age, has been associated with an increased risk of age-related diseases, including cardiovascular disease, cancer, and neurodegenerative disorders.

Examples of studies utilizing epigenetic clocks, including those developed by Dr. Horvath, abound in the scientific literature. For instance, research has demonstrated the utility of epigenetic clocks in predicting mortality risk, evaluating the effects of lifestyle interventions on aging, and investigating the relationship between epigenetic age and various health outcomes.

REFERENCES

  • Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. doi: 10.1186/gb-2013-14-10-r115.
  • Horvath, S. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371-384. doi: 10.1038/s41576-018-0004-3.
  • Levine, M. E., et al. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging, 10(4), 573-591. doi: 10.18632/aging.101414.
  • Marioni, R. E., et al. (2015). DNA methylation age of blood predicts all-cause mortality in later life. Genome Biology, 16, 25. doi: 10.1186/s13059-015-0584-6.